TehTab.ru Инженерный справочник.
Технические таблицы



ПОЛЕЗНЫЕ ССЫЛКИ:

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Математический справочник / / Решение уравнений. Квадратные и биквадратные уравнения. Формулы. Методы.  / / Решения кубических уравнений с вещественными коэффициентами. Универсальные методы.

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы.

Решения кубических уравнений с вещественными коэффициентами. Универсальные методы.

Кубическим уравнением называется уравнение вида

ax3 + bx2 + cx +d = 0 , (1)

где a, b,c ,d - постоянные коэффициенты, а х - переменная.

Мы рассмотрим случай, когда коэффициенты являются веществеными числами.

Корни кубического уравнения.

Число х называется корнем кубического уравнения (1), если при его подстановке уравнение (1) обращается в верное равенство.

Кубическое уравнение имеет не более трех корней (над комплексным полем всегда три корня, с учетом кратности) . И всегда имеет хотя бы 1 (вещественный) корень. Все возможные случаи состава корней легко определить с помощью знака дискриминанта кубического уравнения, т.е.:

Δ= -4b3d + b2c2 - 4ac3 + 18abcd - 27a2d2.

Итак, возможны только 3 следующих случая:

  • Δ > 0 - тогда уравнение имеет 3 различных корня. (Для продвинутых - три различных вещественных корня)
  • Δ < 0 - уравнение имеет лишь 1 корень. (1 вещественный и пару комплексно сопряженных корней)
  • Δ = 0 - хотя бы 2 корня уравнения совпадают. Т.е. мы имеем дело либо с уравнением с 2умя совпадающими корнями, и еще 1ним отличным от них, либо с уравнением с 3емя совпадающими корнями. (В любом случае все корни вещественные. И уравнение имеет 3 совпадающих корня, тогда и только тогда, когда результант его и его второй производной равен нулю)

На практике часто , решение кубических уравнений упирается в разложении их на множители. Т.е. алгоритм приблизительно следующий: угадываем один корень, пусть это будет корень α. Затем делим многочлен на (х- α), (если α корень, то он должен поделиться без остатка). Ну а дальше мы имеем дело с обычным квадратным уравнением. Но угадать можно только рациональный корень, и то, если коэффициенты подобраны удачным образом, так что этот корень просто угадывается. Мы же рассмотрим универсальные методы решения кубичесих уравнений.

Формула Кардано.

Это формула для нахождения корней канонической формы кубического уравнения. (Над полем комлексных чисел).

Канонической формой кубического уравнения называется уравнение вида

y3 + py + q = 0 (2)

К такому виду можно привести любое кубическое уравнение вида (1) с помощью следующей замены:

x= y - b/3a (3)

p= - b2/3a2 + c/a

q= 2b3/27a3 - bc/3a2 + d/a

Итак, приступим к вычислению корней. Найдем следующие величины:

Q=(p/3)3 + (q/2)2

α = (-q/2 + Q1/2)1/3

β = (-q/2 - Q1/2)1/3

Дискриминант уравнения (2) в этом случае равен

Δ = - 108Q

Дискриминант исходного уравнения (1) будет иметь тот же знак , что и вышеуказанный дискриминант. Корни уравнения (2) выражаются следующим образом:

y1= α + β

y2= - (α + β)/2 + (31/2(α - β)/2)i

y3 =- (α + β)/2 - (31/2(α - β)/2)i

Соответственно, если Q>0, то уравнения (2) и (1) будут иметь лишь 1 (вещественный) корень, y1. Подставим его в (3) и найдем х для уравнения (1). (если вас интересуют также мнимые корни, то просто вычислите еще и y2, y3 и подставьте их в (3).

Если Q<0, то уравнение (2), как и уравнение (1) имеет три различных вещественных корня, но для их вычисления нужно уметь извлекать квадратный корень из отрицательного числа. Если вы это умеете, то проделайте расчеты, получите три корня y1, y2, y3 и подставьте их в (3).

Если же Q =0, то все корни уравнений (1) и (2) вещественные, причем как минимум 2 корня каждого из уравнений совпадают. При этом имеем

α = β, и

y1=2α,

y2= y3 = - α. Аналогично подставляем в (3) и получаем ответ.

Тригонометрическая формула Виета.

Эта формула находит решения приведенного кубического уравнения, то есть уравнения вида

x3 + ax2 + bx +c = 0 (4)

 

Очевидно, любое уравнение вида (1) можно привести к виду (4), просто поделив его на коэффициент а.

Итак, алгоритм применения этой формулы:

1. Вычисляем

Q=(a2- 3b)/9

R=(2a3 - 9ab + 27c)/54

2. Вычисляем

S = Q3 - R2

3. a) Если S>0, то вычисляем

φ=(arccos(R/Q3/2))/3

И наше уравнение имеет 3 корня (вещественных):

x1= - 2(Q)1/2cos(φ) - a/3

x2= - 2(Q)1/2cos(φ+2π/3) - a/3

x3= - 2(Q)1/2cos(φ-2π/3) - a/3

б) Если S<0, то заменим тригонометрические функции гиперболическими.

Вычисляем

φ=(Arch( |R|/|Q|3/2)/3

Тогда

единственный корень (вещественный): x1= -2sgn(R)*|Q|1/2*ch(φ) - a/3

Для тех, кого интересуют также и мнимые корни:

x2= sgn(R)*|Q|1/2*ch(φ) - a/3 +(3|Q|)1/2 sh(φ)i

x3= sgn(R)*|Q|1/2*ch(φ) - a/3 -(3|Q|)1/2sh(φ)i

 

ГДЕ:

ch(x)=(ex+e-x)/2

Arch(x) = ln(x + (x2-1)1/2)

sh(x)=(ex-e-x)/2

sgn(x) - знак х

в) Если S=0,то уравнение имеет меньше трех различных решений:

x1= -2*R1/3 - a/3

x2=x3=R1/3 - a/3



Дополнительная информация от TehTab.ru:
  • Решение уравнений. Формулы приведения для полиномов. Разность квадратов, квадрат разности, квадрат суммы, разность и сумма кубов, куб разности и суммы. Они же "формулы сокращенного умножения".
  • Решение уравнений. Формулы сокращенного умножения. Разность квадратов, сумма кубов и разность кубов и разность четвертых степеней. Квадрат суммы и квадрат разности и куб суммы и куб разности.
  • Решение квадратных уравнений. Дискриминант. Формула дискриминанта. ( Дискриминат на 4 и на 1). Теорема Виета. 3 способа.
  • Биквадратные уравнения
  • Решение уравнений. Результант двух многочленов
  • Вы сейчас здесь: Решения кубических уравнений с вещественными коэффициентами. Универсальные методы.
  • Основные формулы и таблицы логарифмов. Действия со степенями и корнями. (ссылка).
  • Основные тригономентрические формулы и таблицы значений синусов, косинусов, тангенсов, котангенсов (ссылка)
  • Решение дифференциальных уравнений (диффуров). Дифференциальные уравнения, порядок дифференциального уравнения.
  • Квадратный корень. Таблица квадратов

  • ↓Поиск на сайте TehTab.ru - Введите свой запрос в форму

    Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.