TehTab.ru Инженерный справочник.
Технические таблицы



ПОЛЕЗНЫЕ ССЫЛКИ:

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Математический справочник / / Степенные ряды Тейлора, Маклорена (=Макларена) и периодический ряд Фурье. Разложение функций в ряды.  / / Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0.

Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0.

Ряд Маклорена (=Макларена) это ряд Тейлора в окрестности точки а=0.

Оказывается, большинство практически встречающихся математических функций могут быть с любой точностью представлены в окрестностях некоторой точки в виде степенных рядов, содержащих степени переменной в порядке возрастания. Например, в окрестности точки х=0:

Разложение e^x в ряд Маклорена (=Макларена)

Разложение sinx в ряд Маклорена (=Макларена)

Разложение chx в ряд Маклорена (=Макларена)

При использовании рядов, называемых рядами Маклорена (=Макларена), смешанные функции, содержащие, скажем, алгебраические, тригонометрические и экспоненциальные функции, могут быть выражены в виде чисто алгебраических функций. С помощью рядов зачастую можно быстро осуществить дифференцирование и интегрирование.

Теорема Маклорена (ряд Маклорена (=Макларена)) имеет вид:

1)Разложение функции в ряд Маклорена (=Макларена) , где f(x) - функция, имеющая при а=0 производные всех порядков. Rn - остаточный член в ряде Маклорена (=Макларена) (Тейлора при а=0)определяется выражением Остаточный член в ряде Маклорена (= Макларена)

2)Остаточный член в ряде Маклорена (= Макларена)

k-тый коэффициент (при хk) ряда определяется формулой

определение к-го члена ряда Тейлора

Ряды Маклорена являются частным случаем рядов Тейлора.

Условия применния рядов Маклорена (=Макларена).

1) Для того, чтобы функция f(x) могла быть разложена в ряд Маклорена (=Макларена) на интервале (-R;R) необходимо и достаточно, чтобы остаточный член в формуле Маклорена (=Макларена) для данной функции стремился к нулю при k→∞ на указанном интервале (-R;R).

2) Необходимо чтобы существовали производные для данной функции в точке а=0, в окрестности которой мы собираемся строить ряд Маклорена (=Макларена).

Численное интегрирование с использованием рядов Маклорена (=Макларена).

Значения многих интегралов нельзя найти с помощью каких-либо аналитических методов. Мы уже рассказывали о вычислении таких интегралов с помощью формулы трапеций, формулы Симпсона. Другой метод нахождения числового значения определенного интеграла - выражение функции в виде ряда Маклорена (=Макларена) с последующим поочередным интегрированием каждого члена.




↓Поиск на сайте TehTab.ru - Введите свой запрос в форму

Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.