TehTab.ru Инженерный справочник.
Технические таблицы



ПОЛЕЗНЫЕ ССЫЛКИ:

БОНУСЫ ИНЖЕНЕРАМ!:

МЫ В СОЦ.СЕТЯХ:

Навигация по справочнику TehTab.ru:  главная страница  / / Техническая информация / / Математический справочник / / Линейная алгебра. (Вектора, матрицы)  / / Векторное произведение двух векторов. Он-лайн калькулятор.

Векторное произведение двух векторов. Он-лайн калькулятор.

Векторное произведение двух векторов. Он-лайн калькулятор.

Векторное произведение двух векторов а и b - это операция над ними, определенная лишь в трехмерном пространстве, результатом которой является вектор со следующими свойствами:Векторное произведение

Для большей ясности приведем пример - на рисунке справа вектор [a,b] - векторное произведение векторов а и b. Как сказано в определении, мы привели все три вектора к общему началу, и тогда, если смотреть на вектора a и b с конца вектора [a,b], кратчайший поворот от вектора а до вектора b будет против часовой стрелки .

Правая тройка векторов векторное произведение

Очевидно, что в случае векторного произведения, имеет значение порядок, в котором берутся вектора, более того,

зависимость векторного произведения от порядка векторов

Так же, непосредственно из определения следует, что для любого скалярного множителя k (числа) верно следующее:

Векторное произведение и скаляр

Векторное произведение коллинеарных векторов равно нулевому вектору. Более того, векторное произведение двух векторов равно нулю тогда и только тогда, когда они коллинеарны. (В случае, если один из них нулевой вектор необходимо вспомнить, что нулевой вектор коллинеарен любому вектору по определению).

векторное произведение коллинеарных векторов

Векторное произведение обладает распределительным свойством, то есть

распределительное свойство векторного произведения

Выражение векторного произведения через координаты векторов.

Пусть даны два вектора

координаты векторов векторное произведение

(как найти координаты вектора по координатам его начала и конца - см. статью Скалярное произведение векторов, пункт Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами.)

Тогда

векторное произведение и координаты

Зачем нужно векторное произведение?

Существует множество способов применения векторного произведения, например, как уже написано выше, вычислив векторное произведение двух векторов можно выяснить, коллинеарны ли они.

Коллинеарность и векторное произведение

Или же его можно использовать как способ вычисления площади параллелограмма, построенного на этих векторах. Исходя из определения, длина результирующего вектора и есть площадь данного параллелограмма.

Площадь параллелограмма через координаты векторов. Векторное произведение

      Параллелограмм векторное произведение
Также огромное количество применений существует в электричестве и магнетизме.

 

Он-лайн калькулятор векторного произведения.

Чтобы найти скалярное произведение двух векторов с помощью данного калькулятора, нужно ввести в первую строку по порядку координаты первого вектора, во вторую- второго. Координаты векторов могут быть вычислены по координатам их начала и конца (см. статью Скалярное произведение векторов, пункт Альтернативное определение скалярного произведения, или вычисление скалярного произведения двух векторов, заданных своими координатами. )

 

Координаты первого вектора: { ,    ,    }

Координаты второго вектора: { ,    ,    }

Ответ:  {,   ,   }  




↓Поиск на сайте TehTab.ru - Введите свой запрос в форму

Нашли ошибку? Есть дополнения? Напишите нам об этом, указав ссылку на страницу.